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Abstract 
 
This study numerically investigates the effects of fluid-structure interaction (FSI) on the trailing-edge noise, particu-

larly for the cases of wake instability and Karman vortex shedding. The trailing edge is modeled as a flat plate with an 
elastic cantilever end and its flow-induced vibration is solved by an eigenmode analysis with the Galerkin method. The 
flow and sound coupled in the FSI analysis are computed on the moving grid by a direct numerical simulation (DNS) 
procedure. The computed result of wake instability shows that when the first-eigenmode natural frequency ωn of the 
cantilever is close to be resonant with the wake characteristic frequency ωc, the sound pressure level (SPL) is signifi-
cantly reduced by 20 dB at ωn/ωc=0.95, or increased by 15 dB at ωn/ωc=1.05, for all angles. For the Karman vortex 
shedding, a similar frequency modulation occurs via FSI, if ωn is close to ωc. The flow and acoustic details are some-
what different for this case but a considerable noise reduction was also possible for angles from -120º to +120º. 

 
Keywords: Trailing-edge noise reduction; Fluid-structure interaction; Frequency modulation; Wake instability; Karman vortex shed-

ding 
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1. Introduction 

Trailing-edge noise is an important source for air-
foil or blade noise. It is generated by wake instability, 
Karman vortex shedding, or edge scattering of the 
convecting eddies in the turbulent boundary layer [1], 
the case of which depends on Reynolds number, edge 
bluntness, or local momentum thickness of the 
boundary layer close to the edge, etc. On the trailing-
edge noise, comprehensive experimental investigation 
[2], analytical modeling works [3, 4], and computa-
tions [5, 6] have been conducted for years. There also 
have been some efforts to reduce the trailing-edge 
noise by modifying the blunt trailing-edge profile [7], 
implementing porous media [8], or adopting a brush 
to the trailing edge [9]. For rigid bodies, the trailing-
edge noise is closely related to the aerodynamic loads 
due to boundary layer or unsteady flow behind the 
trailing edge. But, if the body is sufficiently flexible, 

then it will move in response to a fluctuating force, 
and this motion consequently changes the flow struc-
ture and the radiated sound. This recoil effect was 
first described by Lighthill [10] and further investi-
gated by Glegg [11]. In their studies, it was shown 
that when a body of volume V and density ρm is mov-
ing through a fluid of density ρ0, a dipole sound 
strength is determined by, 

 
0 0( ) ( ) ( ) ( )(1 / )i i i i mD t G t Vu t G tρ ρ ρ= − + = − − ,  (1) 

 
where Gi is the fluctuating force applied to the body, 

iu  is the acceleration of the body, and the last term 
represented by density ratio indicates resistance force 
by fluid inertia. In the case of ρm≈ ρ0, the recoil effect 
reacting on the fluctuating force should be considered, 
because the fluid inertia due to the elastic beam mo-
tion has substantial effect on radiated sound. For a 
heavy beam in a light fluid (ρm » ρ0), however, the 
acceleration of the body could be neglected so that 
dipole strength is only determined by loaded fluctuat-
ing force Gi. 
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Fig. 1. Schematic of trailing-edge noise with an elastic canti-
lever end. 
 

In the present study, a fluid-structure interaction 
(FSI) analysis is conducted to seek for the possibility 
of reducing the trailing-edge noise, when ρm » ρ0. As 
shown in Fig. 1, the trailing edge is modeled as a flat 
plate with an elastic cantilever end. It is generally 
known that the natural frequency of the elastic canti-
lever is as a function of its eigenvalues, speed of 
sound and fluid density, aspect ratio (h/L, h: thickness, 
L: length), and elasticity of the cantilever. Our objec-
tive is to scrutinize the FSI effects on the trailing-edge 
noise by varying the elastic properties of the cantile-
ver, especially in the range close to the resonance. 
The flow-induced vibration of the elastic cantilever is 
solved by an eigenmode analysis with the Galerkin 
method, and the flow and sound coupled in the FSI 
analysis are computed by a direct numerical simula-
tion (DNS) procedure described in section 2. In sec-
tion 3, the FSI effects on the trailing-edge noise of 
wake instability and Karman vortex shedding are 
investigated, with discussion on the frequency modu-
lation and the sound pressure level reductions. 
 

2. Computational methodologies 

2.1 Beam equation 

The vertical displacement of the elastic cantilever is 
solved by the beam equation [12], 

 
2 2 2

2 2 2

( , ) ( , )( ) ( ) ( , ),

0

y x t y x tEI x m x f x t
x x t

x L

⎡ ⎤∂ ∂ ∂+ =⎢ ⎥∂ ∂ ∂⎣ ⎦
< <

, 

  (2) 
 

where EI (x) is a flexural rigidity, m (x) is the mass 
per unit length, f (x,t) represents the force distributed  

  
Fig. 2. Modal shapes of the elastic cantilever beam. 

 
over the elastic region, and L is the length of the trail-
ing-edge. The forces on the elastic cantilever beam 
are usually involved with pressure and shear stress, 
but it is assumed that shear stress is negligible com-
pared to pressure. 

In this study, the flow-induced vibration is solved 
by an eigenmode analysis with the Galerkin method, 

 

1
( , ) ( ) ( )r r

r
y x t Y x tη

∞

=

=∑ ,  (3) 

 
where r is the mode number, Yr (x) and ηr (t) represent 
the modal shape and coordinates, respectively. By 
substituting Eq. (3) into Eq. (2) and applying an or-
thogonality of the natural modes, an ordinary differ-
ential equation of the modal coordinates can be de-
rived: 

 
2

0
( ) ( ) ( ) ( , ) , 1,2,

L

r r r rt t Y x f x t dx rη ω η+ = =∫   (4) 

 
An analytic solution for the modal shape, Yr (x) 

[13] is obtained by employing a fixed left-end bound-
ary condition for the cantilever beam, which is written 
as 

 
( ) cosh cos (sinh sin )r r r r r rY x x x x xβ β σ β β= − − − , (5) 

 
where 

 
sinh sin
cosh cos

r r
r

r r

L L
L L

β βσ
β β

−=
+

,  (6) 

 
and the eigenvalues of the cantilever beam with a 
fixed left-end can be calculated by 
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cos cosh 1 0r rL Lβ β + = .  (7) 
 
For approximations, only three eigenvalues are 

used: β1L=1.87510, β2L =4.69409, and β3L =7.85476. 
The corresponding modal shapes obtained by Eq. (5) 
are shown in Fig. 2. 

 
2.2 Direct numerical simulation 

With the time-dependent displacement of the canti-
lever beam, the flow and sound around the trailing 
edge with fluid-structure interactions (FSI) are di-
rectly solved by the full two-dimensional compressi-
ble Navier-Stokes equations, 

 
v vQ E F E F

t x y x y
∂ ∂ ∂ ∂ ∂+ + = +
∂ ∂ ∂ ∂ ∂

,  (8) 

 
where 
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  (9) 

 
and τxx, τyy, and τxy indicate viscous stress terms. 

In order to include the effects of wall deformation 
of the elastic trailing edge, the governing equations 
are solved in a moving coordinate system. The com-
ponents of the transformation matrix between the 
physical space (x, y, t) and the computational space (ξ, 
η, τ) are defined as 

 
1 0 0

t x y

t x y

d dt
d dx
d dy

τ
ξ ξ ξ ξ
η η η η

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

,  (10) 

 
where 
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Here, J=xξyη-xηyξ, and xτ and yτ represent the mov-

ing grid velocities at each control surface. 
The governing equations are spatially discretized 

with a sixth-order compact finite difference scheme 
[14] and integrated in time by a four-stage Runge-
Kutta method. The first and second derivatives with 
respect to x are implicitly calculated with a five sten-
cil, i.e., 

 
1 1 2 2

1 1 1 1 1 1

1 1 2 2
2 1 2 1 2 22 2

2 4
2 2

4

i i i i
i i i

i i i i i i
i i i

f f f ff f f a b
x x

f f f f f ff f f a b
x x

α α

α α

+ − + −
− +

+ − + −
− +

− −′ ′ ′+ + = +
∆ ∆
− + − +′′ ′′ ′′+ + = +
∆ ∆

,  (12) 

 
where α1=1/3, α2=2/11, a1=14/9, b1=1/9, a2=12/11, 
and b2=3/11. 

Practically, when using a high order scheme to the 
stretched meshes, numerical instability is encountered 
due to numerical truncations or failure of capturing 
high wave-number phenomena. Thus, a tenth-order 
spatial filtering proposed by Gaitonde et al. [15] is 
applied every iteration to suppress the high frequency 
errors that might be caused by grid non-uniformity. 
For the far-field boundary condition, an energy trans-
fer and annihilation (ETA) boundary condition [16] 
with buffer zone is used for eliminating any reflection 
of the out-going waves. 

 
2.3 Moving grid system 

To resolve the interaction process among flow, 
acoustics, and structure, the full compressible Navier-
Stokes equations, Eq. (8) are directly solved on the 
moving grid with the high-order numerical schemes 
described in section 2.2. In many practical applica-
tions involving deforming meshes, the grid speeds, xτ 
and yτ in Eq. (11) are not known analytically and must 
be approximated to the desired degree of accuracy 
with the evolving grid coordinates at several time 
levels. 

For this case, the computed grid speeds are ap-
proximated as 

 
1 1[(1 ) (1 2 ) ]/n n nx x x x tτ φ φ φ+ −= + − + + ∆ ,  (13) 

 
where φ  indicates the time differencing schemes 
listed in Table 1. The time differencing schemes have 
different accuracy with the time-integration method 
used for Eq. (8). For the four-stage Runge-Kutta 
method (RK4), the governing equations are integrated 
in time from n to n+1. In this case, the moving grid 
speeds should be approximated at n+1/2, for which  



 Y. Bae et al. / Journal of Mechanical Science and Technology 22 (2008) 1426~1435 1429 
 

Table 1. Temporal accuracy of the time differencing schemes 
for moving grids. 
 

φ  Approximation 
xτ 

Accuracy 
(RK4) 

Accuracy 
(Leapfrog) 

-1 
1( )n nx x

t

−−
∆

 O(∆t) O(∆t/2) 

0 
1( )n nx x

t

+ −
∆

 O(∆t2) O(-∆t/2) 

-1/2 
1 1( )
2

n nx x
t

+ −−
∆

 O(∆t/2) O(∆t2) 

1/2 
1 1(3 4 )

2

n n nx x x
t

+ −− +
∆

 O(-∆t/2) O(∆t) 

 
the Taylor's series are expanded as 
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 (14) 

 
Consequently, 0φ =  only yields the second-order 

temporal accuracy as shown in Table 1. 
For the Leapfrog method, the governing equations 

are integrated in time from n-1 to n+1. So, the moving 
grid speeds should be approximated at n, for which 
the Taylor's series are expanded as 
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3 4
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3 4

1( ) ( )
2!

1( ) ( )
3!

1( ) ( )
2!

1( ) ( ) .
3!

n

n

f f t tf t t

f t t f t O t

f f t tf t t

f t t f t O t

+

−

′= + ∆ + ∆
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  (15) 

 
For this case, the second-order temporal accuracy is 

only achieved for 1/ 2φ = − . It is also worth noting 
that the three-level time differencing ( 1/ 2φ = ) is 
only first-order accurate for both RK4 and Leapfrog 
methods. 

  
Fig. 3. Computation of acoustic wave propagation on the 
oscillating grid. 
 

 
 
Fig. 4. Time history of L2-error for RK4 method. 
 

 
 
Fig. 5. Time history of L2-error for Leapfrog method. 

 
Here, two-dimensional acoustic wave propagation 

is computed on the moving grid to test the accuracy 
of the time differencing schemes listed in Table 1. As  
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Fig. 6. Pressure distribution along the y=0 line at t=75. 

 
sketched in Fig. 3, the linearized Euler equations 
(LEE) are solved on the non-deforming but oscillat-
ing cartesian grid (∆x=∆y=1), with a grid speed de-
fined as 

 
0 0( ) 2 cos(2 )u t f A f tπ π= ,  (16) 

 
where A (magnitude) is 10 and f0 (oscillation fre-
quency) is 0.02. The LEE calculation was continued 
until t=100, using the time steps, ∆t=1/4 and ∆t=1/32 
for RK4 and Leapfrog methods, respectively. 

As shown in Figs. 4 and 5, the second-order accu-
rate time differencing schemes yield L2 errors close to 
the non-moving case, while substantial errors are 
introduced by the first-order schemes. This is due to 
the inaccurately evaluated characteristic speeds, 
u xτ− , ( )u c xτ+ − , and ( )u c xτ− − , where xτ  is 
the grid speed approximated by the time differencing 
scheme listed in Table 1. Fig. 6 compares the pressure 
distributions at t=75 calculated by different φ 's with 
RK4 method. A noticeable phase difference is ob-
served with the moving grid because of the time dif-
ferencing errors. 
 

3. Results and discussion 

3.1 Wake instability 

By the Kelvin-Helmholtz instability, a wake behind 
the plate becomes unstable at Reynolds number based 
on the plate thickness h, Reh=200 and free-stream 
Mach number, M=0.4. As a result, the unstable wake 
produces a distinct dipole tone at the trailing edge. As 
depicted in Fig. 7, a computational domain is set from  

 
 
Fig. 7. Computational domain for the trailing-edge noise with 
an elastic cantilever end. 

 

 
(a) 

 
(b) 

 
Fig. 8. Trailing-edge noise by wake instability (rigid case): a) 
vorticity (40 contours between -5 and 5), b) pressure fluctua-
tion (40 contours between -0.0005 and 0.0005). 
 
-400h to 300h in the streamwise direction and ±160h 
in the normal direction, and 301×211 mesh points are 
non-uniformly distributed for DNS of flow and 
acoustics. A no-slip boundary condition is applied 
along the solid wall, except the region from -400h to -
200h, where a slip condition is used. In order to in-
duce the wake instability, a laminar boundary layer 
over the plate is disturbed at t=0 by a vortical distur-
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bance defined as 
 

( )
( )

2
2 2

0 0 0 0

2
2 2

0 0 0 0

1( , ) ( )exp 0.5 1 ( ) ( ) /
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1( , ) ( )exp 0.5 1 ( ) ( ) /
2

u x y U y y x x y y h
h

v x y U x x x x y y h
h

⎛ ⎞⎛ ⎞′ = − − − + −⎜ ⎜ ⎟⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞′ =− − − − + −⎜ ⎜ ⎟⎟
⎝ ⎠⎝ ⎠

, (17) 

 
where (x0,y0)= (0,0.1L) and L is the cantilever length. 

First, a 'rigid' body case is computed for finding a 
reference solution. Fig. 8 shows the instantaneous 
vorticity contours of unstable wake and its resulting 
acoustic field. The pressure fluctuation monitored at 
(x/L,y/L)= (0,2) indicates that the characteristic fre-
quency, Sth=fh/U0 is approximately 0.046 (or 
ωc=2πfL/c∞≈ 2.31) and the sound pressure level 
(SPL) of the peak is predicted as 109 dB (see Fig. 9). 
This frequency is found very close to the most unsta-
ble wake instability mode [1]. 

 

 
 

 
(a) 

 
(b) 

 
Fig. 9. Time variation of pressure fluctuations and SPL spec-
trum (rigid case) at (x/L,y/L)=(0,2). 

To examine the FSI effects on the trailing-edge 
noise, the rigid part of the trailing edge is now re-
placed by an elastic cantilever with L/h=20, and a 
parametric study is conducted by varying the elastic-
ity (E) of the cantilever. A non-dimensionalized, natu-
ral frequency of the elastic cantilever is written as 

 
2( )

12r r
h EL

c L
ω β

ρ∞

= ,  (18) 

 
where βr, c∞, ρ, h/L, and E denote eigenvalues, speed 
of sound, fluid density, aspect ratio, and elasticity of 
the cantilever, respectively. In this study, the FSI 
effects on the trailing-edge noise are scrutinized for 
the test cases summarized in Table 2. 

The tip displacement response of the elastic canti-
lever under FSI condition is plotted in Fig. 10 against 
ω1n/ωc. Here, ω1n is the first eigenmode natural fre-

quency of the elastic cantilever and ωc is the charac-
teristic frequency of the wake. Although the tip dis-
placement itself is quite small (e.g. 7×10-4h), it is 
noticeably amplified at each eigen-resonant frequency 
(i.e. ω1n/ωc=1, ω2n/ωc=1, and ω3n/ωc=1). It is interest-
ing to note that the maximum tip displacement does 
not occur at ωn/ωc=1 but at 1.05. This shift may be 
caused by the non-linear coupling effects between the 
 
Table 2. Test cases for the elastic cantilever beams. 
 

 Density [kg/m3] Elasticity [Pa] ω1 ω2 ω3 ω1/ ωc

Case A 240 1.91×108 0.132 0.825 2.310 0.057
Case B 240 6.39×108 0.241 1.510 4.226 0.104
Case C 240 1.50×108 0.369 2.310 6.468 0.160
Case D 240 6.72×108 0.781 4.896 13.709 0.338
Case E 240 5.87×108 2.310 14.477 40.535 1.000
Case F 240 1.36×108 3.516 22.034 61.697 1.522

 

  
Fig. 10. Tip displacement versus natural frequencies of the 
elastic cantilever. 
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unstable wake and the elastic cantilever. To further 
examine with the non-FSI case, a forced-vibration of 
the elastic cantilever is computed for an external force 
defined as 

 
( ) ( )cos( )cf t q x tω= ,  (19) 

 
where ωc=2.31 and a distributed force q(x) on the 
cantilever beam is modeled as 

 

( )2

0 , 0 0.5
( )

0.0024 0.5 , 0.5 1

x
q x

x x

≤ ≤⎧⎪= ⎨
− ≤ ≤⎪⎩

  (20) 

 
As shown in Fig. 11(a), the tip displacement in 

forced-vibration continuously diverges at the first 
eigen-resonant frequency (0% offset), while beats are 
clearly observed for the ±5% offset cases. Meanwhile, 
the FSI cases show different dynamical behaviors, as 
presented in Fig. 11(b). At the resonance frequency, 
the tip displacement grows initially but converges to 
an asymptotic value (3.8×10-4h) because fluids act as 
a damper to the cantilever beam motions. When the 
frequency is ±5% offset from the wake characteristic 
frequency, the beats gradually disappear and the tip 
displacement is either least amplified to 8×10-5h at -
5% offset or most amplified to 7×10-4h at  

 
(a) 

 
(b) 

 
Fig. 12. Modulated frequency ωf and sound pressure level 
(dB) versus natural frequency of the elastic cantilever 
(dashed line: rigid case): wake instability. 

   

(a)  

   

(b) 
 
Fig. 11. Tip displacement of the elastic cantilever: a) forced vibration and b) fluid-structure interaction (FSI). 
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+5% offset. 
It is also found that this dynamical behavior alters 

the frequency and acoustic characteristics of the elas-
tic cantilever. As shown in Fig. 12(a), the wake fre-
quency is considerably modulated, especially at the 
first eigen-resonance frequency via FSI effects. When 
ωn/ωc is 0.95, the wake characteristic frequency is 
altered from 2.31 to 2.22, whereas for ωn/ωc=1.05, it 
changes to 2.39. There are also two small variations at 
the second and third eigenmodes of the wake charac-
teristic frequency, i.e., ωn/ωc=0.160 and ωn/ωc=0.057, 
but their effects are obviously much weaker than the 
first eigenmode. 

As shown in Fig. 12(b), the sound pressure level is 
also significantly altered by this frequency modula-
tion. When compared to the rigid body case, the trail 
ing-edge noise monitored at (x/L,y/L)= (0,2) is reduced 
 

 
 

(a) 

  
(b) 

 
Fig. 13. SPL directivity patterns for various elastic properties 
of the cantilever at r=L: wake instability. 

by 20 dB with the elastic cantilever at ωn/ωc=0.95, or 
increased by 15 dB at ωn/ωc=1.05. For completeness, 
the SPL characteristics are examined for all angles by 
plotting the directivity patterns of the pressure fluc-
tuations at r=L. As shown in Fig. 13, significant noise 
reductions occur at ωn/ωc= 0.95 for all angles. 

 
3.2 Karman vortex shedding 

With a potential reduction of trailing-edge noise via 
FSI effects, a similar investigation is pursued for the 
Karman vortex shedding noise. A laminar boundary 
layer over the plate is considered at Reh=1000 and 
M=0.4. The computational domain and grid system 
are the same as in the last section. A no-slip wall 
boundary condition is, however, applied from -1.5L 
so that the boundary layer thickness at the trailing 
edge is close to 1.2h. This value is an upper limit 
(laminar) for invocation of the Karman vortex shed-
ding with blunt thickness [1]. In this case, the dipole 
tone is stronger than the previous case. The computed 
result for the 'rigid' trailing edge indicates that the 
characteristic frequency of the vortex shedding occurs 
at Sth=fh/U0≈ 0.145 (or ωc=7.28) and the SPL peak is 
close to 135dB. 

Based on results of wake instability, one can also 
expect similar frequency modulations and noise re-
ductions via FSI with the elastic cantilever. So, the 
elastic properties of the cantilever are only selected to 
have the first eigenmode natural frequency close to 
the characteristic frequency of the Karman vortex 
shedding, i.e., ωc=7.28. As shown in Fig. 14, the fre-
quency modulation also occurs near ωn/ωc=1, similar 
to the wake instability. In this case, a difference be-
tween the elastic and rigid trailing edges occurs, when 
the first-eigenmode natural frequency of the cantile-
ver is ±2% offset from ωc. 
 

  
Fig. 14. Modulated frequency ωf versus natural frequency of 
the elastic cantilever (dashed line: rigid case): Karman vortex 
shedding. 
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(a) 

  
(b) 

 
Fig. 15. SPL directivity patterns for various elastic properties 
of the cantilever at r=L: Karman vortex shedding. 
 

The noise characteristics of the elastic cantilever 
for the Karman vortex shedding are, however, some-
what different from those for the wake instability. As 
shown in Fig. 15, the SPL directivity patterns indicate 
that a significant noise reduction also occurs for an-
gles from -120º to +120º, even for the positive offsets 
from ωc. The FSI effects on the trailing-edge noise 
are not as drastic as in the wake instability because 
the Karman vortex shedding is a more localized phe-
nomenon near the trailing edge. If the density of the 
material is changed, then a more pronounced SPL 
reduction could be expected. 
 

4. Conclusions 

The effects of fluid-structure interaction (FSI) on 
the trailing-edge noise are scrutinized by varying the 
elastic properties of the cantilever end. For the wake 

instability, the computed results of DNS with an ei-
genmode analysis of the beam equation show that 
when the first-eigenmode natural frequency ωn of the 
cantilever is close to be resonant with the wake char-
acteristic frequency ωc, the sound pressure level 
(SPL) is significantly reduced at all angles by 20 dB 
at ωn/ωc=0.95, or increased by 15 dB at ωn/ωc=1.05. 
For the Karman vortex shedding, a similar frequency 
modulation also occurs via FSI, if ωn is close to ωc. 
The flow and acoustic details are somewhat different 
but a significant noise reduction was also possible for 
angles from -120º to +120º. The present FSI effects 
on the trailing-edge noise result from the fact that the 
first eigenmode of the natural frequency has signifi-
cant effects on the displacement, frequency modula-
tion and acoustic characteristics of the elastic cantile-
ver. 
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